A reduction algorithm for reconstructing periodic Jacobi matrices in Minkowski spaces

نویسندگان

چکیده

The periodic Jacobi inverse eigenvalue problem concerns the reconstruction of a matrix from prescribed spectral data. In Minkowski spaces, with given signature operator H=diag(1,1,…,1,?1), corresponding is pseudo-Jacobi matrix. for such matrices consists in matrices, same order and H. this paper we solve by applying Sylvester’s identity Householder transformation. solution number algorithm are here exhibited, illustrative numerical examples given. Comparing approach known Lanczos reconstructing our method shown to be more stable effective.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Marchenko-Ostrovski mappings for periodic Jacobi matrices

We consider the 1D periodic Jacobi matrices. The spectrum of this operator is purely absolutely continuous and consists of intervals separated by gaps. We solve the inverse problem (including characterization) in terms of vertical slits on the quasimomentum domain . Furthermore, we obtain a priori two-sided estimates for vertical slits in terms of Jacoby matrices.

متن کامل

Minkowski Reduction of Integral Matrices

In 1905 Hermann Minkowski introduced his theory of reduction of positive definite quadratic forms. Recently, Hans J. Zassenhaus has suggested that this theory can be applied to the problem of row reduction of matrices of integers. Computational investigations have shown that for matrices with more columns than rows, the number of steps required for reduction decreases drastically. In this paper...

متن کامل

Limit Periodic Jacobi Matrices with a Singular Continuous Spectrum and the Renormalization of Periodic Matrices

For all hyperbolic polynomials we proved in [11] a Lipschitz estimate of Jacobi matrices built by orthogonalizing polynomials with respect to measures in the orbit of classical Perron-Frobenius-Ruelle operators associated to hyperbolic polynomial dynamics (with real Julia set). Here we prove that for all sufficiently hyperbolic polynomials this estimate becomes exponentially better when the dim...

متن کامل

The Discrete Spectrum for Complex Perturbations of Periodic Jacobi Matrices

We study spectrum inclusion regions for complex Jacobi matrices which are compact perturbations of real periodic Jacobi matrix. The condition sufficient for the lack of discrete spectrum for such matrices is given.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Applied Mathematics and Computation

سال: 2022

ISSN: ['1873-5649', '0096-3003']

DOI: https://doi.org/10.1016/j.amc.2021.126853